

A Systematic and Optimized Method for

Designing Protocols for Real-Time Applications

A. Khoumsi, G.v. Bochmann
R. Dssouli, A. Ghedamsi

Publication # 900

Département d'informatique et de recherche opérationnelle

Université de Montréal

Avril 1994

 1

A SYSTEMATIC AND OPTIMIZED METHOD FOR DESIGNING

PROTOCOLS FOR REAL-TIME APPLICATIONS

A. Khoumsi , G.v. Bochmann , R. Dssouli, A. Ghedamsi

Université de Montréal

Faculté des arts et des sciences

Département d'informatique et

de recherche opérationnelle

C.P. 6128, Succursale A

Montréal, (Quebec)

H3C 3J7

Abstract. In [KBD93] and in this paper, service and protocol are specified by timed automata. In [KBD93], a

method for deriving real-time protocol specifications from service specifications is proposed. In this paper, we

improve and generalize this method. Improvement is made by minimizing the number of exchanged messages

between protocol entities. In this case, temporal requirements on protocol are less strong than in [KBD93].

Generalization is made by considering an unreliable medium. An error-recovery capability is then necessary.

1. Introduction

 A way for specifying real-time applications is to use timed automata, where executions of

transitions are associated to temporal conditions. In this paper conditions represent temporal

requirements only between consecutive transitions. For instance, we can specify that the delay
between a data transmission and its reception must be less than tmax. More generally, a time

between two consecutive events must be in an interval [tmin, tmax]. In [KBD93], we propose a

method for generating timed automata specifying the protocol from a timed automaton

specifying the desired service. In this paper, we firstly improve this method by proposing a

way for reducing the number of synchronization messages exchanged between protocol

entities. We show that the temporal requirements synthesized for protocol entities are less

strong than those generated in [KBD93]. Secondly, we show that our method can be used even

if the medium is unreliable, provided that few modules are added to protocol entities: one

module per protocol entity.

 2

The continuation of this paper is organized as follows. In section 2, we show how service and

protocol for non-real-time applications are specified. In section 3, we introduce the basic

principle for deriving protocol entities, and we improve the way this principle is used in

[KBD93] by minimizing the number of exchanged messages. Afterwards, we present the rules

for deriving protocol without real-time requirements. In section 4, we describe how temporal

requirements are specified in the service and the protocol. In section 5, we explain the

approach used for calculating temporal requirements for protocol entities from temporal

requirements on the service. In section 6, the resolution is done for three cases, one static and

two dynamic. We show that the obtained temporal requirements are less strong than those in

[KBD93]. In section 7, we present the different steps used for deriving protocol specifications

for real-time applications. In section 8, few examples illustrate our method. In section 9, we

consider that the medium is unreliable. We show that the protocol entities synthesized for a

reliable medium can be used for an unreliable medium. In this case, a protocol entity

communicates with the medium via a module which makes the unreliability of the medium

invisible by the protocol entity. And finally, we conclude.

2. Service and protocol specifications for non real-time applications

2.1. Service specification

 The desired service is described by a finite automaton, noted SS, which specifies the

sequences of service primitives (SP) we would like to observe at the different service access

points (SAP). To each SAP corresponds one protocol entity (PE) and we will not distinguish a

PE and the corresponding SAP. Transitions of SS are defined by three parameters (fig.1)

which are :

 - the service primitive E executed by the transition

 - a number a identifying the entity or the SAP where the service primitive E is executed.
 This entity is noted PEa

 - a number p identifying the transition, which is then noted Tp=(E,a)

T = (B, 4) T = (B, 1) T = (C, 4)4 5 6

T = (A, 1) T = (B, 3) T = (C, 2)2 31
T1

T2

T4

T5

T63T

1

2

3 4
Figure 1. Service specification

 A transition is then designated by Tp=(E,a) and means that the primitive E is executed in

PEa. As in [SP90, KBD93], for a state e of SS, out(e) et in(e) are respectively the sets of SAP

 3

corresponding to the outgoing and ingoing transitions. Example : on figure 1 in(2) =
{SAP1,

SAP2, SAP4}, and out(2)={SAP1,SAP3}.

2.2. Protocol specification

 A protocol entity PEa is described by a finite automaton, noted PSa (fig. 6), which has

three types of transitions.

First type : execution of a service primitive
Second type : the sending of a message is defined by si(p), and means "message

 parameterized by p is sent by PEa to entity PEi".

Third type : reception of a message is defined by ri(p), and means "message parameterized

 by p is received by PEa from PEi".

3. Deriving protocol entities for non real-time applications

3.1. Principle of derivation

 Deriving protocol consists on generating as many finite automata as the number of
protocol entities. Each of these automata is noted PSi and specifies the protocol entity PEi.

For providing the desired service, the different PEi will exchange synchronization

messages through a reliable medium. The basic principle used for deriving protocol is rather

simple : when in the service two consecutive primitives A and B are executed by two different
entities PEa and PEb, then :

 - after execution of A by PEa, this one sends a message m to entity PEb

 - after reception of message m by PEb, this one executes B

If after execution of the service primitive A by PEa, there is a choice between k service

primitives Bi executed by PEbi (i=1 to k) (fig.2), the basic principle is then used in [KBD93] as

follows. When PEa executes transition Tp, it decides which transition among Tpi (i=1 to k)

must be executed. It sends then the same message to all PEbi (PEa). The message contains

the following two parameters:
 - the identifier p of the executed transition Tp,

 - the identifier pj of the chosen transition Tpj to be executed.

T =(A, a)

T =(B1, b1)

T =(Bk, bk)

n
p

p1

pk

Figure 2. Choice between several actions.

 4

All entities PEb1 to PEbk receive the message sent by PEa but only the chosen entity executes

its transition. With this method, PEa may possibly send an important number of messages to

inform one entity that it can execute its transition, and all other entities that they must do

nothing. For a state e of SS, the number of messages is equal to the cardinal of out(e), noted
|out(e)|. Our improvement here is that PEa must send only one message, to the selected entity

to inform it that it can execute one of its transitions.

3.2. Rules for deriving protocol entities

3.2.1. Transformation of the service specification

 The first step for deriving protocol is to transform the service specification SS into an

equivalent specification TSS (T for Transformed). The latter must respect the following

condition.

C1: From every state e of TSS, all executable outgoing transitions are executed by a same
 protocol entity PEb (fig. 3), i.e. cardinal of out(e) is equal to one (|out(e)|=1).

T =(B1, b)

T =(Bk, b)

n

p1

pk

Figure 3. Outgoing transitions in a state of the transformed specification TSS.

The way for obtaining TSS from SS is the following. For every state e of SS, e is replaced by
as many states ei as the cardinal of out(e) (fig. 4) . Outgoing transitions from states ei respect

the condition C1 and the following condition.
C2: Outgoing transitions of two different states ei and ej of TSS, generated from a same state

 of SS, are executed by two different protocol entities.

T =(E, a)p
e

T =(E1, b)p1

T =(E3, b) p3

T =(E2, c)p2

T =(E, a)p e1

T =(E1, b)p1

T =(E3, b) p3

T =(E2, c)p2
T =(E, a)p e2

 4.a. State e in SS 4.b. Transformation of e in TSS

Figure 4. Example of transformation from SS to TSS

Remarks : - if TSSSS, then TSS is non deterministic.

 - If for every state e of SS, |ou(e)|=1, then TSS=SS.

The transformation of the service specification of figure 1 gives the equivalent specification

on figure 5.

 5

T1

T2

T4

T5

T63T

1

2

T1

2

3

3

4

T2
3T T6

1

2

1 2

Figure 5. Transformation of specification in figure 1

3.2.2. Rules

From the sevice specification SS, the derivation procedure consists of five steps.

Step 1 : SS is transformed into TSS

Step 2 : From TSS, we generate GPS (global protocol specification) with the following rules :

 For a transition Tp=(E,a) : n1 n2
T =(E,a)p

 Case a : if out(n2)={SAPa}, the transition remains unchanged.

 Case b : if out(n2)={SAPb}≠{SAPa}, the transition becomes:

 n1 n2
T =(E,a) t (p)ap b

 where tb

a(p) means "message parameterized by p is sent by PEa and then received by PEb ".

Step 3 : For each PEi, we generate GPSi from GPS by the following rules :

 For a transition Tp=(E,a) : n1 n2
T =(E,a)p

 Case a : if a=i, the transition becomes : n1 n2
E

 Case b : if a≠i the transition becomes: n1 n2

 where represents a spontaneous transition.

 For a transition tb
a(p) : n1 n2

t (p)a
b

 Case a : if a=i (then b≠i), the transition becomes : n1 n2
s (p)b

 Case b : if b=i (then a≠i), the transition becomes: n1 n2
r (p)a

 Case c : if a≠i and b≠i, the transition becomes: n1 n2

 where sb(p) means " message parameterized by p is sent to PEb ",

 and ra(p) means " message parameterized by p and coming from PEa is received"

 6

Step 4 : Transitions of the different GPSi are considered spontaneous and are removed by

projection for obtaining protocol specifications PSi . An algorithm for removing is given in

[BC79]. Intuitively, let A be an automaton containing transitions and specifying a system A,

and let A be the automaton obtained by removal of from A. If an external observer can

detect all transitions but , then A is the specification of A as it is perceived by the observer.

Step 5 : The obtained PSi are minimized, and are transformed into deterministic automata if

they are non deterministic.

For our example in figure 5, we obtain the specifications in figure 6:

A

B

s (1)3

r (3)2 s (5)4

r (6)4

r (4)4

B

r (3)2

r (4)4

s (3)1

C

r (2)3

3s (3)

r (6)4r (1)1

r (3)2

s (2)2

B

s (2)4

r (6)4

r (5)1

B

C

s (6)1

r (5)1

r (2)3

s (4)1

3s (6)

r (5)1
r (2)3

 6.a. PS1 6.b. PS2 6.c. PS3 6.d. PS4

 Figure 6. Obtained protocol specifications .

We can prove that the unique obtained solution is semantically and syntactically correct .

The semantics is correct means that the derived entities provide the service specified by SS.

Their syntax is correct because they are deadlock-free and livelock-free, and no unspecified

reception error is possible.

4. Service and protocol specifications for real-time applications

4.1. Service specification

On a service specification with time requirements (SST), each transition is defined by :

- the three parameters presented in the previous section,
- a set Cp of time intervals, where p is the number identifying the transition .

A transition is then defined by Tp=(E,a,p,Cp), and the execution of Tp means execution by

entity PEa of action E of the transition Tp. Let's consider for a state n of SST, its k ingoing

transitions Tpi, and its m outgoing transitions Tqj (figure 7). The representation of figure 7 is

used for defining the semantics of the sets Cqj of the outgoing transitions . Each Cqj contains

as many time intervals as there are ingoing transitions on state n, i.e. it contains k intervals
noted Tpi,qj =[Tmipi,qj; Tmapi,qj] (i= 1 to k). The semantics of a Tpi,qj is the following :

When state n is reached by an ingoing transition Tpi, then :

 Condition 1 : if the transition Tqj is executed, it must be executed in the time interval Tpi,qj

 after state n has been reached.

 7

 Condition 2 : besides, an outgoing transition among all the transitions Tqj (j = 1 to m)

 must inevitably be executed after state n is reached.

(E1, a1, p1, C)p1

(Ek, ak, pk, C) pk

n

q1(F1, b1, q1, C)

qm(Fm, bm, qm, C)

Figure 7. Ingoing and outgoing transitions on a state of SST

Example: let n be a state with one ingoing transition and two outgoing transitions (fig.8).

(E1, a1, p1, C)p1
n

(F1, b1, q1, C) q1

(F2, b2, q2, C)q2
Figure 8. Example on the definition of the semantics of time intervals

Each of Cq1 and Cq2 contains one interval , with Cq1={Tp1,q1} and Cq2={Tp1,q2}. For

example Tp1,q1=[1,3] and Tp1,q2=[2,5]. In this case, if Tq1 (resp. Tq2) is executed, it must be

executed in the interval [1,3] (resp. [2,5]) after execution of Tp1 (condition 1). Besides, if

neither Tq1 nor Tq2 are executed in a time equal to 3 after execution of Tp1, then Tq2 must

 inevitably be executed in the interval [3,5] after execution of Tp1 (condition 2). With this

condition we have no deadlocks due to time constraints.

From this semantics, we deduce that if state n is the initial state then the different intervals of
each Cqj are equal. In other words, for each j=1 to m, we have Tp1,qj=Tp2,qj=...=Tpk,qj .

Remark: Tp is a transition identified by p, while Tp,q is the time interval containing the

delay between transitions Tp et Tq.

4.2. Protocol specification for real-time applications

 There are three types of transitions in a protocol specification.

First type : execution of a service primitive is defined by (E, Dp) where :

 - E is the name of the service primitive,
 - Dp is a set of intervals whose semantics is given in section 6.

Second type : sending a message to another protocol entity is defined by si(p){Sp,b}, where

 Sp,b is an interval, contrary to Cp and Dp which are sets of intervals, (fig. 13).

Third type : receiving a message is defined by ri(p). There is no time requirement in this

 type of transition (fig. 13). Time requirements in types one and two are

 sufficient for respecting time requirements in the service .

 8

5. Approach of the problem for calculating time requirements (PCTR)

5.1. Transforming SST into TSST

 Before calculating temporal requirements for protocol entities, the transformation

presented in section 3.2 must be applied to the timed service specification SST for obtaining

the specification TSST. Therefore, outgoing transitions of a same state in TSST are executed

by a same protocol entity.

Example of figure 1 is reconsidered for a real-time application (fig. 9.a). After transformation,

we obtain the non deterministic specification of figure 9.b.

T1

T2

T4

T5

T63T

1

2

3 4

1T = (A, 1, 1, C) 1

2T = (B, 3, 2, C) 2

3
T = (C, 2, 3, C)3

4
T = (B, 4, 4, C) 4

5T = (B, 1, 5, C) 5

6T = (C, 4, 6, C)6

T1

T2

T4

T5

T63T

1

2

T1

2

3

3

4

T2
3T T6

1

2

1 2

 9.a. Specification SST 9.b. Specification TSST

Figure 9. Example of transformed real-time specification

5.2. Approach of the problem

 For calculating time constraints on protocol entities, we must consider, at once on a state

n of TSST, one of its ingoing transitions and all its outgoing transitions (fig.10). In a first
time, we consider the case where out(n)≠{SAPa}. In other words, the protocol entity PEa

(executing the ingoing transition) is different than PEb which executes the outgoing

transitions.

T =(E1, b, p1, C)p1

T =(Ek, b, pk, C) pk

n
T =(E, a, p, C)pp

p1

pk

Figure 10. Outgoing transitions on a state of TSST

Let then Tp be a transition in an entity PEa followed by several transitions Tpj, j=1 to k, in

PEb. After Tp, PEa must send a message to PEb (by sb(p)), and when PEb receives the

message (by ra(p)), it executes one of the k transitions Tpj (j=1 to k). The sequencing of

events between Tp and Tpj is represented in function of the time on figure 11.a.

 9

axe du tempst j

t s t m tj r

s (p)bTp r (p)a Tpj

s (p)b r (p)a

PE PEa b

TpjTp

 11.a. Representation in function of the time 11.b. Representation by entity

Figure 11. Representation of events between Tp and Tpj

The temporal requirements in the service impose that the time tj between executions of Tp

and Tpj belongs to Tp,pj=[Tmip,pj; Tmap,pj]. We suppose that we have a model of the reliable

medium, i.e. the transit delay tm , in the medium, of a message sent by PEa and received by

PEb, belongs to an interval Ma,b=[Mmia,b, Mmaa,b] which depends on PEa and PEb.

The aim of temporal requirements derivation on protocol entities is the the following one.

From requirements tm Ma,b and t j Tp,pj (for j= 1 à k), we must derive constraints on ts

and t jr (j=1 to k) which ensure that temporal requirements t j Tp,pj on the service will be

respected . These derived constraints are written in the form ts Sp,b=[Smip,b ,Smap,b], and

tjr R p,pj =[Rmip,pj , Rmap,pj] for j=1 à k .

Requirements on ts and tjr are temporal requirements on the protocol. In fact, ts is the delay

between Tp and sb(p) which are executed in PEa, and tjr is the delay between ra(p) and Tpj

which are executed in PEb (fig. 11.b).

Remark : If PEa=PEb, no message is sent. In this case we take ts=tm=0. So the derivation is
trivial.: tj=tjr, then Sp,b=[0;0], Ma.b=[0;0] and Rp,pj=Tp,pj .

The following notations also will be used :
 - Vmip,b et Vmap,b are parameters belonging to [0,1]. They are defined for a transition Tp

 (executed by an entity PEa) and a protocol entity PEb (≠PEa) which executes transitions

 consecutive to Tp. They are used to choose one solution among an infinite number of

 solutions. If we obtain, as we will see formerly, for Sp,b=[Smip,b, Smap,b] the constraint

 Smap,b[], we choose Smap,b = +Vmap,b*(-). In the same manner, if we obtain

 Smip,b [], we choose Smip,b = + Vmip,b*().

 - Addition and subtraction of two intervals [a, b] and [c, d] are defined by

 [a, b] + [c, d] = [a + c, b + d] , and [a, b] - [c, d] = [a - c, b - d].

If we summarize, the entries of PCTR for protocol entities are :
 - Tp,q and Ma,b for every pair of consecutive transitions Tp et Tq , respectively executed in

 PEa and PEb,

 - Vmip,b and Vmap,b for every pair (Tp, PEb) of transition Tp and entity PEb executing

 10

 transitions consecutively to Tp. They are used to choose a particular solution among an

 infinite number of solutions.

Solutions of PCTR are :
 - Sp,b for every transition Tp executed by an entity PEa and followed by transitions executed

 in PEb≠PEa. If PEb=PEa, we can take Sp,b=[0;0].

 - Rp,q for every pair of consecutive transitions Tp and Tq .

We show in the next section 5.3 that there exist conditions on entries Tp,q and Ma,b of PCTR

for the existence of solutions.

5.3. Condition for existence of solutions

 We consider then, for a state n of TSST, one of its ingoing transition Tp (executed in

PEa), and all its outgoing transitions Tpj , j=1 to k, (executed in PEb) (fig. 10). From figure

11.a, we can write :
for j=1 to k : tj Tp,pj implies ts + tm + tjr Tp,pj (1)

As tm Ma,b=[Mmia,b, Mmaa,b], then condition (1) implies :

for j= 1 to k : ts + Mmia,b + tjr ≥ Tmip,pj (2)

 ts + Mmaa,b + tjr ≤ Tmap,pj (3)

Formulae (2) et (3) imply

 for j= 1 to k : Tmap,pj - Mmaa,b ≥ sup(Tmip,pj - Mmia,b; 0) (4)

Condition (4) is for a state of TSST and one of its ingoing transitions. Therefore, for every
state and one of its ingoing transitions Tp, resolution of PCTR consists in :

 - checking if condition (4) is respected

 - if the checking is positive then :
 * interval Sp,b is calculated (constraint on ts),

 * intervals Rp,pj , j=1 to k, are calculated (constraints on tjr , j=1 to k).

5.4. Comparison with [KBD93] approach (old approach)

 In [KBD93], the resolution of PCTR is done from the specification SST. In our improved

approach, the resolution is done from the transformed specification TSST. Therefore,

condition (4) with the old approach is more restricting than here. In fact, a condition of

existence from SST can be constituted by several conditions of existence from TSST, and it is

respected if all those conditions are respected. An example is given on figure 12.

 11

T =(A,1,1,{T ;T })1 2,1 3,1

T =(B,1,2,{T })2 1,2

T =(C,2,3,{T })3 1,3

T 1

T 2

T 3

T 1

1
1

2

22

21

 12.a. SST 12.b. TSST

Figure 12. Example for comparing conditions for existence of solutions

From SST, we have three conditions of existence (i, j, and k), which are the following.

 - for state 1 and ingoing transition T2 : Tma2,1 ≥ Tmi2,1 (i)

 - for state 1 and ingoing transition T3 : Tma3,1 - Mma2,1 ≥ sup(Tmi3,1- Mmi2,1 ; 0) (j)

 - for state 2 and ingoing transition T1 : Tma1,2 ≥ Tmi1,2 (k1)

 : Tma1,3 - Mma1,2 ≥ sup(Tmi1,3- Mmi1,2 ; 0) (k2)

The third condition (k) is constituted by (k1) and (k2). If for instance only (k1) is respected,

then the condition (k) is not respected, and we consider that the temporal requirements cannot
be respected after execution of transition T1. The last assumption is too restricting, because in

reality only temporal requirements between executions of T1 and T3 cannot be respected

(because k2 is not respected).

With the improved approach,the restriction does not exist: from TSST we have four

conditions for existence of solutions, because (k1) and (k2) are considered to be two
independent conditions. In fact (fig.12.b) (k1) is for temporal requirements between T1 and

T2,

 (k2) is for temporal requirements between T1 and T3.

The transformation which modifies the timed service specification SST into TSST has then a

second advantage. Besides minimizing the number of messages, sometimes we can have

solutions for PCTR from TSST when there are not from SST.

6. Resolution of PCTR

 For resolving PCTR, we consider the three following cases :

Static case : messages transmitted by entities contain no temporal information ,

First dynamic case : the PE put a temporal information in messages they send,

Second dynamic case : besides the temporal information put by the PE, the medium adds a

second temporal information in the message. This information is an estimation of the transit

delay of the message in the medium. In this third case, treated in detail in section 6.3, the

receiving entity can have a good temporal information without using a global clock.

6.1. Static case

 12

 This case is static because the intervals Sp,b and Rp,pj are constant. When an entity PEa

executes a transition Tp and decides to send a message to entity PEb, the time ts, between

execution of Tp and transmission of the message, belongs to a constant interval Sp,b. When

PEb receives the message from PEa, it can execute a transition Tpj, among the k possible

transitions (j=1 to k), in a time tjr belonging to a constant interval Rp,pj .

 If Sp,b and Rp,pj are such that condition (1) is respected for every ts Sp,b and tjr Rp,pj

and tm Ma,b, then it is equivalent to have :

 for j=1 to k : Sp,b + Ma,b + Rp,pj Tp,pj (5)

that is to say : for j= 1 to k : Smip,b + Mmia,b + Rmip,pj ≥ Tmip,pj (6)

 Smap,b + Mmaa,b+ Rmap,pj ≤ Tmap,pj (7)

Resolution :
 Condition (7) implies : Smap,b [0; minj=1 à k (Tmap,pj - Mmaa,b)] (8)

 then (6) and (7) imply : Smip,b [sup(U, 0); Smap,b] (9)

 with U = maxj=1 à k (Smap,b + (Mmaa,b - Mmia,b) - (Tmap,pj - Tmip,pj)) (10)

By using parameters Vmap,b and Vmip,b , we choose a particular solution for Smap,b and

Smip,b which respects (8) and (9). We have then :

 Smap,b = Vmap*minj=1 à k (Tmap,pj - Mmaa,b) (11)

 Smip,b = sup(U, 0) + (Smap,b - sup(U, 0))*Vmip,b (12)

We choose afterwards the less restrictive solutions on Rp,pj=[Rmip,pj; Rmap,pj] respecting

(6) and (7). We have then :

 for j=1 to k : Rmap,pj = Tmap,pj - Mmaa,b - Smap,b (13)

 Rmip,pj = sup(Tmip,pj - Mmia,b- Smip,b; 0) (14)

 We can easily check that the obtained service is included in the desired service (safety).
It is better to choose Vmap,b as small as possible and Vmip,b as big as possible. This implies to

have Smap,b and Smip,b as small and close as possible. Rmap,pj and Rmip,pj will be then the less

constrained as possible, and the receiving entities will have as much time as possible to

provide the service.

6.2. First dynamic case

 13

 This case is dynamic because the receiving PEb calculates dynamically the interval Rp,pj,

when it receives the message from PEa. In fact, after execution of Tp, PEa sends to PEb a

message with information ts. And PEb calculates Rp,pj in function of ts.

Resolution:

 formula (3) implies ts + Mmaa,b ≤ Tmap,pj . If Sp,b=[Smip,b;Smap,b] is an interval always

containing ts then we have the condition (8) as in the static case:

Smap,b [0; minj=1 à k (Tmap,pj - Mmaa,b)] (8)

And Smip,b is less constrained than in the static case :

 Smip,b [0 ; Smap,b] (15)

As in the static case , a particular solution is chosen by using parameters Vmap,b and Vmip,b :

 Smap,b = Vmap,b*minj=1 à k (Tmap,pj - Mmaa,b) (11)

 Smip,b = Smap,b*Vmip,b (16)

 If ts , which belongs to [Smip,b; Smap,b] , is the delay when the message is sent after

execution of Tp, the receiving entity knows it and can choose :

 for j=1 to k : Rmap,pj (ts) = Tmap,pj - Mmaa,b - ts (17)

 Rmip,pj (ts) = sup(Tmip,pj - Mmia,b - ts; 0) (18)

 We can easily check that the provided service is included in the desired service. With the
information ts, the receiving entity PEb will use the time allocated to it to provide the service

more efficiently then in the static case. In fact, time interval Rp,pj(ts) ((17) and (18)) is less

restricting than interval Rp,pj ((13) and (14)), because Rp,pj is strictly included in Rp,pj(ts).

Intuitively, in dynamic case the receiving entity PEb has a more accurate information about

when Tp has been executed by PEa. In the static case, it has to suppose the worst cases for the

time ts . Therefore, sometimes in static case it has to "hurry up", when in dynamic case it has

not to.

6.3. Second dynamic case

 In this case, PEb receives the message with informations ts and tm, and it calculates

dynamically the interval Rp,pj in function of these two informations.

Resolution :

 14

Sp,b = [Smip,b ; Smap,b] is resolved as in section 6.2 ((11) and (16)). Rmap,pj and Rmip,pj are

calculted dynamically by PEb with the following formulae :

 for j=1 to k : Rmap,pj (ts, tm) = Tmap,pj - ts - tm (19)

 Rmip,pj (ts, tm) = sup(Tmip,pj - ts - tm; 0) (20)

We can check that the desired service is respected (safety) by the protocol. With information
tm, the receiving entity PEb uses more efficiently the time allocated to it to provide the

service. In fact, Rp,pj(ts) ((17) and (18)) is strictly included in Rp,pj(ts, tm) ((19) and (20)

).

6.4. Comparison with [KBD93] approach

 Temporal requirements on protocol obtained with [KBD93] approach are more
restricting than those derived with our improved approach. In fact, intervals containing Smap,b

and Smip,b ((8), (9) and (15)) are bigger than or equal to those obtained in [KBD93]. With our

approach, Sp,c and Rp,pj are independent when Tpj is executed by PEb≠PEc.

If we recapitulate, advantages of the approach here are :

 - the number of exchanged messages is minimized,

 - conditions for existence of solutions are less strong,

 - derived temporal requirements are less restricting.

6.5. Transit delay in the medium

 In the second dynamic case, time tm is not an accurate value. It is an estimation of the

transit delay in the medium. In fact, if the message goes through many nodes before
reaching its destination, tm comprises estimations of :

 * transmission and propagation delays between the different adjacent nodes,

 * the time passed in the nodes (processing and especially waiting in queues) .

For these reasons, positive parameters and can be added in formulae (19) and (20) which

become :

 for j=1 to k : Rmap,pj (ts, tm) = Tmap,pj - tm - ts - (21)

 Rmip,pj (ts, tm) = sup(Tmip,pj - tm - ts + ; 0) (22)

This is equivalent to estimate the transit delay in the interval [tm - ; tm +] .

7. Deriving protocol for real-time applications

 15

 The derivation procedure consists of six steps.

Step 1 : The service specification SST is transformed into the equivalent TSST

Step 2 : From the specification TSST, we generate SSTT defined below.

- In the static case, a receiving entity PEb must know the constant interval Rp,pj ((13) and

(14)) , which is the time interval allocated to it, since reception of the message, for executing
Tpj.

- In the first dynamic case, a receiving entity PEb must know the constant interval Xp,pj =

 Tp,pj - Ma,b and the parameter ts contained in the message. PEb can therefore calculate

 dynamically Rp,pj (by formulae (17) and (18)).

- in the second dynamic case, PEb must know the constant interval Tp,pj , and parameters ts

 and tm received in the message. It can therefore calculate dynamically Rp,pj (by formulae

 (19) and (20)).

We deduce from this that SSTT is obtained from TSST by :
 * associating time intervals Sp,b to transitions Tp followed by transitions executed in

 PEb≠PEa. Here PEa is the entity which executes Tp.

 * replacing time intervals Tp,pj by intervals:

 - Rp,pj in the static case

 - Xp,pj in the first dynamic case

 The substitution is not done in the second dynamic case.

For obtaining SSTT, every transition Tp of TSST :
(E, a, p, C) p

n1 n2

is then replaced by the transition :
(E, a, p, D , S) p,bp

n1 n2

Where out(n2) ={SAPb} and Dp is the set of intervals :

 * Rpi,p in the static case

 * Xpi,p in the first dynamic case

 * Tpi,p in the second dynamic case

where pi are identifiers of ingoing transitions of state n1.

Remark : Intervals in Dp have not the same semantics in the three cases. In the static case,

Rpi,p are constant temporal requirements, while in the two other cases, Xpi,p and Tpi,p are

constant intervals used for dynamic calculation of the time requirements on Tp when it

succeeds to transition Tpi.

 16

The complexity of the algorithm for generating SSTT is in O(n*e*s) with :

 - n : number of states of TSST,

 - e : maximum number of ingoing transitions by state in TSST,

 - s : maximum number of outgoing transitions by state in TSST.

Step 3 : For each PEi we generate SSTi from SSTT. The finite automaton SSTi is obtained by

replacing every transition (E,a,p,Dp,Sp,b) by : - (,a,p) if a ≠ i ,

 - (E,p,Dp,Sp,b) if a=i

Step 4 : A finite automaton SPSTi, is derived from each SSTi by using the following rules :

 - For a transition (E,p,Dp,Sp,b) of SSTi :
(E, p, D , S) p,bp

n1 n2

 Case a : if out(n2) = {SAPi} the transition becomes :
(E, D) pn1 n2

 In this case, interval Sp,b is not defined because b=i.

 Case b : if out(n2) ≠ {SAPi} we obtain :

 * in the static case : n1 n2
(E, D)p p,bs (p){S }b

 * in the two dynamic cases :
s (p,t){S }

n1 n2
(E, D)p p,bb s

 sb(K) means "transmission to entity PEb of message parameterized by K" . {Sp,b} specifies

 that sb(K) must be executed in a time belonging to interval Sp,b after the preceding action.

 -For a transition (,a,p): n1 n2
(,a,p)

 Case c : if out(n2) ={SAPi}, the transition becomes :

 * static case : n1 n2
r (p)a

 * first dynamic case : n1 n2
r (p, t)a s

 * second dynamic case : n1 n2
r (p, t , t)a s m

 Case d : if out(n2)={SAPj}≠{SAPi}, the transition becomes : n1 n2

 ra(K) means "reception from PEa of a message parameterized by K" .

Step 5: The transitions are considered spontaneous and are removed by projection (see also
 section 3.1.2). We obtain then timed protocol specifications for each PEi.

 17

Step 6 : The obtained specifications are minimized, and transformed into deterministic
automata PSTi if they are non deterministic.

8. Examples

8.1. Example 1

 We consider example of figure 9. This example is also in [KBD93] with the old
approach. We have C1 = {T4,1}, C2 = {T1,2 ; T3,2 ; T6,2} , C3 = {T2,3}, C4 = {T2,4}, C5

= {T1,5 ; T3,5 ; T6,5} , C6 ={T5,6}.

For instance T4,1=[3, 6], T1,2 =[5,10], T3,2=[4,8], T6,2=[4,10] , T2,3=[3,8] , T2,4=[4,9] ,

T1,5=[1,3] , T3,5=[4,8] , T6,5=[3,8] , T5,6=[4,10].

We choose the medium Mu,v=[2,4] for every (u,v), and at last Vmap,a=Vmip,a=0.5 for

(p,a){(1,3);(2,2);(2,4);(3,1);(3,3);(4,1);(5,4);(6,1);(6,3)}.

The derived protocol specifications are represented below (figure 13).

r (2)3s (3){S }1 3,1

(C,D)3

s (3){S }3 3,3

r (6)4r (1)1

r (3)2

r (6)4

(B,D)2

s (2){S }2 2,2

s (2){S }4 2,4

r (5)1

r (5)1

r (2)3

r (5)1

r (2)3 (C,D)6

(B,D)4

3s (6){S }6,3 s (6){S }1 6,1

s (4){S }1 4,1

r (3)2

r (6)4

r (4)4

r (3)2

r (4)4(A,D)

(B,D)

1

5

(B,D)5

s (1){S }3 1,3

s (5){S }4 5,4

1

2

3 4 5 6

 13.a. PST1 13.b. PST2 13.c. PST3 13.d. PST4

Figure 13. First example of protocol specifications with time requirements

 With D1={R4,1}, D2={R1,2; R3,2; R6,2}, D3={R2,3}, D4={R2,4}, D5={R1,5; R3,5; R6,5},

D6={R5,6} .

Remark: Step 5, which consists on removing non determinism, generates redundant temporal
requirements. For example on figure 13.a, D5={R1,5; R3,5; R6,5}. But for transition (B,D5)

from state 2, only R1,5 is necessary. And for transition (B,D5) from state 4, only R3,5 and R6,5

are necessary.
R1,5 contains the delay between executions of (A,D1) and (B,D5),

R3,5 contains the delay between executions of r2(3) and (B,D5),

R6,5 contains the delay between executions of r4(6) and (B,D5),

From formulae (11), (12), (13) and (14), we calculate :
 S1,3 = [1.5; 3] R1,2 = [1.5; 3] S4,1 = [0.5; 1] R4,1 = [0.5; 1]

 R1,5 = [1; 3] S5,4 = [1.5; 3] R5,6 = [0.5; 3]

 18

 S2,2 = [1; 2] R2,3 = [0; 2] S6,1 = [1; 2] R6,5 = [0 ; 2]

 S2,4 = [1.25; 2.5] R2,4 = [0.75; 2.5] S6,3 = [1.5; 2] R6,2= [0.5; 3]

 S3,1 = [1; 2] R3,5 = [1; 2]

 S3,3 = [1; 2] R3,2 = [1; 2]

8.2. Example 2

 This example also is in [KBD93] with the old approach. Two protocol entities PE1 and

PE2 must communicate in a connected mode. To reduce calculations, we do the following

hypotheses :
 - connection and disconnection are done by PE1 ,

 - the provider of service in PE2 cannot refuse a connection ,

 - data transfer is done from PE1 to PE2 ,

 - PE1 sends a new data only if the preceeding has been received by PE2 .

The executed events are noted TC.rqt, TC.ind, TC.rsp, TC.cnf, TD.rqt, TD.ind, TDt.rqt and

TDt.ind . TC, TD and TDt are respectively abbreviations of T-connect, T-disconnect and T-

data. And rqt, ind, rsp and cnf are respectively abbreviations of request, indication, response

and confirm. A formal representation of service with time requirements is represented on

figure 14, it is inspired by the protocol of the transport layer classe 0 ([Ta90], that is why

primitives have names beginning by letter T). We have T1=(TC.rqt,1,1,C1),

T2=(TC.ind,1,2,C2), T3=(TC.ind,2,3,C3), T4=(TD.rqt,2,4,C4), T5=(TD.ind,1,5,C5),

T6=(TC.rsp,2,6,C6), T7=(TC.cnf,1,7,C7), T8=(TDt.rqt,1,8,C8), T9=(TDt.ind,2,9,C9),

T10=(TD.rqt,1,10,C10), T11=(TD.rqt,1,11,C11), T12=(TD.ind,2,12,C12). Où C1={T2,1, T5,1,

T12,1}, C2={T1,2}, C3={T1,3}, C4={T3,4}, C5={T4,5}, C6={T3,6}, C7={T6,7}, C8={T7,8, T9,8},

C9={T8,9}, C10={T7,10, T9,10}, C11={T8,11}, C12={T10,12, T11,12}.

T1
T2

T4

T5

T6 T7

3T

1

2

34 5 6
T8

7
T9

T10
T11

T12

Figure 14. Formal specification of the desired service with two communicating entities

On figure 14:
 - T1 to T7 correspond to connection set-up phase. If the connection is accepted, state 6 is

 reached.
 - T8 to T9 represent data transfer phase,

 - T10 to T12 specify the disconnection phase.

 19

 Let's take for instance T2,1=T5,1=T12,1=[3,6], T1,2=[1,2], T1,3=[3,7], T3,4=[1,2], T4,5=[2,5],

T3,6=[2,3], T6,7=[4,7], T7,8=[1,3], T9,8=[2,6], T8,9=[3,6], T9,10=[2,5], T8,11=[0,2],

T10,12=T11,12=[3,6]. Let's also take the medium Mu,v=[2,4] for every (u,v), and finally

parameters Vma
p,b

=Vmi
p,b= 0.5 for every p=1, 4, 6, and 8 to 12.

The derived protocol specifications with time requirements are represented on figures 15 and

16, with D1={R2,1, R5,1, R12,1}, D2={R1,2}, D3={R1,3}, D4={R3,4}, D5={R4,5}, D6={R3,6},

D7={R6,7}, D8={R7,8, R9,8}, D9={R8,9}, D10={R7,10, R9,10}, D11={R8,11}, D12={R10,12, R11,12}.

1

(TC.rqt,D)1

(TC.cnf,D)7

(TC.ind,D)2

r (12)2

(TDt.rqt,D)8

(TD.ind,D)5

s (1){S }2 1,2

(TD.rqt,D)10

(TD.rqt,D)11

r (9)2

r (4)2

s (8){S }2 8,2

s (10){S }2 10,2

s (11){S }2 11,2

r (6)2

 Figure 15. Protocol specification for the communicating entity PE1

1

s (4){S }1 4,1

r (1)1

r (10)1

r (8)1

r (11)1

s (6){S }1 6,1

s (9){S }1 9,1

s (12){S }1 12,1

(TD.ind,D)12

(TC.ind,D)3

(TD.rqt,D)4
(TC.rsp,D)6

(TDt.ind,D)9

Figure 16. Protocol specification for the communicating entity PE2

From formulae (11), (12), (13) and (14) we calculate:
 R1,2 = [1; 2]

 S1,2 = [0.75; 1.5] R1,3 = [0.25; 1.5]

 R2,1 = [3; 6] R3,4 = [1; 2] R3,6 = [2; 3]

 S4,1 = [0.25; 0.5] R4,5 = [0; 0.5]

 R5,1 = [3; 6]

 S6,1= [1; 1.5] R6,7 = [1; 1.5]

 R7,8 = [1; 3] R7,10 = [1; 3]

 S8,2 = [0.5; 1] R8,9 = [0.5; 1]

 R8,11 = [0; 2]

 S9,1= [0.25; 0.5] R9,8 = [0; 1.5] R9,10 = [0; 0.5]

 S10,2 = [0.5; 1] R10,12 = [0.5; 1]

 20

 S11,2= [0.5; 1] R11,12 = [0.5; 1]

 S12,1 = [0.5; 1] R12,1= [0.5; 1]

9. Deriving protocol with unreliable medium

9.1 Approach

 When the medium is not reliable, two general approaches are thinkable. The first
one consists of modifying the protocol entities PEi obtained for reliable medium ([CL88]).

The second, which is the one we have adopted, consists of inserting a new module Mi between

each PEi and the medium (fig.17.).

Reliable Medium

...

PE1

SAP1

PE 2

SAP2

PE n

SAPn...

...

Unreliable Medium

...

...

...
PE1

SAP1

PE 2

SAP 2

PE n

SAPn

M1 M M2 n

 17.a. Realiable medium 17.b. Unreliable medium with modules

Figure 17. Addition of modules for an unreliable medium

The aim of each module Mi is to hide as much as possible the unreliability of the medium.

The ideal would be that the unreliable medium combined with modules Mi is equivalent to a

reliable medium. But in reality, it is not always possible

9.2. Classical examples

9.2.1. Transport Layer ([Ta90])

 If the medium is made up of the three basic layers (physical, data linker and network),
the added modules Mi can be the transport layer. If for instance the network is unreliable and

generate N-Reset, then the transport protocol is of class 4.

9.2.2. "Alternating bit" protocol ([MB83])

 If the medium can loose or garble messages, the modules Mi can for instance be the

"alternating bit" protocol. On figure 18, there is an example of two communicating entities
PE1 and PE2. Here, for simplicity, PE1 is a sender and PE2 is a receiver.

 21

Unreliable Medium

s0

s1

rack 0

rack 1

racke

r0

r1

re

sack 0

sack 1

r (p)1s (p)2

M 1

PE1

M 2

PE 2

SAP1 SAP2

Figure 18. Alternating bit for an unreliable medium

si and ri (i=0, 1) represent respectively the sending and receiving of an information frame

which contains the last data block submitted by the user and the "alternating bit". Similarly,

the operations sacki and racki are the sending and receiving of an acknowledge frame which

contains only a single bit. The operations re and and racke are a reception of a frame in error.
Specifications of the medium, of the sender (M1) and of the receiver (M2) are given in

[MB83], respectively on figures 10.a, 10.b and 10.f.

10. Conclusion

 A method for deriving protocol for real-time applications is proposed in [KBD93]. In this

paper, we improve and extend this method. We improve it by minimizing the number of

exchanged messages. Consequences of this improvement are :

 - conditions for existence of solutions are less strong. In some cases, approach in [KBD93]

does not derive a protocol which respects a desired service, when the improved approach

gives a solution.

 - temporal requirements on derived protocols are less strong.

Extension of [KBD93] is done by considering an unreliable medium.

As in [KBD93], the time requirements can be calculated statically or dynamically. In the

dynamic case, a method for exchanging complete temporal informations between entities is

proposed. In this case, synchronization of local clocks is not necessary, so a global clock is not

necessary. The dynamic case is interesting because the receiving protocol entities use more

efficiently the time allocated to them to provide the service. In this paper, we give the same

examples (sections 8) than those in [KBD93], but the derived protocols are not the same. Let's

notice that the proposed algorithm can be useful in other areas than telecommunications

(robotics ...) where several systems interact with each other to perform tasks in bounded

delays. But there is a restriction : tasks are not concurrent.

At the present time, we are working for the two following improvements :

 - considering concurrent tasks ,

 22

 - considering time requirements between events which are not consecutive.

References

[Al90] R. Alur, C. Courcoubetis and D. Hill, "Model checking for real-time systems."

Proceedings of the 5th Symposium "Logic in computer Science", June 1990.

[BC79] W.A. Barrett and J.D. Couch, " Compiler Construction: Theory and Practice ",

Publisher: Science Research Associates, Inc. 1979.

[BD91] B. Bertomieu and M.Diaz, "Modeling and verification of time dependant systems

using Petri nets." IEEE Transactions of Software engineering, vol.17, No 3, March 1991.

[BG86] G.v. Bochmann and R. Gotzhein, "Deriving protocols specifications from service

specifications." Proceedings du Symposium ACM SIGCOM '86, Vermont, USA, pp.148-

156, 1986.

[CL88] P.Y.M. Chu and M.T.Liu, "Synthesizing Protocol specifications from service

specifications in FSM model." Proceedings IEEE Computer Networking Symposium

1988.

[KHB92] C. Kant, T. Higashino and G.v. Bochmann, "Deriving protocol specifications from

service specifications written in LOTOS." Rapport interne No 805, Département

d'Informatique et de Recherche Opérationnelle. Faculté des arts et des sciences, Université

de Montréal, January 1992.

[Ka91] M. Kapus Kolar, "Deriving protocol specifications from service specifications with

heterogeneous timing requirements." Proceedings IEEE Int. Conf. on Software

Engineering for real time systems, United-Kingdom, 1991.

[KBD93a] A. Khoumsi, G.v. Bochmann, and R. Dssouli, ''Dérivation de spécifications de

protocoles à partir de spécifications de services avec contraintes temporelles.'' Colloque

Francophone pour l'ingénierie des protocoles (CFIP), Montréal, September 1993.

[KBD93] A. Khoumsi, G.v. Bochmann, and R. Dssouli, ''Dérivation de spécifications de

protocole à partir de spécifications de service avec des contraintes temps-réel.'' Soumis à la

revue Réseaux et Informatique Répartie (RIR), Editions Hermès, Paris.

 23

[KR91] M. Kapus Kolar and J. Rugelj, "Deriving protocol specifications from service

specifications with simple relative timing requirements." Proceedings ISMM Int.

Workshop on parallel computing, Italy, 1991.

[RDU85] C.V. Ramamoorthy, S.T. Dong and Y. Usuda, "An implementation of an automated

protocol synthesizer (APS) and its application to the X21 protocol." IEEE Transactions on

Sofware Engineering, Vol. SE-11, No 9, pp. 886-908, Sept. 1985.

[RBC92] N. Rico, G.v. Bochmann and O. Cherkaoui, "Model-Checking for real-time systems

specified in LOTOS." CAV 1992.

[Si82] D. P. Sidhu, "Rules for synthesizing correct communication protocols." ACM

SIGCOM comput. Commun., Rev. Vol. 12, No 1, pp.35-51, January 1982.

[Sid92] D. P. Sidhu, "Protocol design rules, Protocol specification, testing and verificaation."

Ed. Sunshine C., North-Holland, pp.283-300, 1982.

[SP90] K.Saleh and R. Probert, "A service-based method for the synthesis of Communications

protocols." International Journal of Mini and Microcomputers, Vol. 12, No 3, 1990.

[Ta90] A. Tanenbaum, "Réseaux : Architectures, protocoles, applications" InterÉditions,

Paris 1990.

[ZWRCB80] Zafiropulo, C.H. West, H. Rudin, D.D. Cowan, and D. Brand, "Towards

Analyzing and Synthesizing Protocols ", IEEE Transactions on Communications,

Vol.28(4), April 1980, pp.651-661.

