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Abstract. In [KBD93] and in this paper, service and protocol are specified by timed automata. In [KBD93], a 

method for deriving real-time protocol specifications from service specifications is proposed. In this paper, we 

improve and generalize this method. Improvement is made by minimizing the number of exchanged messages 

between protocol entities. In this case, temporal requirements on protocol are less strong than in [KBD93]. 

Generalization is made by considering an unreliable medium. An error-recovery capability is then necessary.  

 

1.  Introduction   
 

 A way for specifying real-time applications is to use timed automata, where executions of 

transitions are associated to temporal conditions. In this paper conditions represent temporal 

requirements only between consecutive transitions. For instance, we can specify that the delay 
between a data transmission and its reception must be less than tmax. More generally, a time 

between two consecutive events must be in an interval [tmin, tmax]. In [KBD93], we propose a 

method for generating timed automata specifying the protocol from a timed automaton 

specifying the desired service. In this paper, we firstly improve this method by proposing a 

way for reducing the number of synchronization messages exchanged between protocol 

entities. We show that the temporal requirements synthesized for protocol entities are less 

strong than those generated in [KBD93]. Secondly, we show that our method can be used even 

if the medium is unreliable, provided that few modules are added to protocol entities: one 

module per protocol entity.  
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The continuation of this paper is organized as follows.  In section 2, we show how service and 

protocol for non-real-time applications are specified. In section 3, we introduce the basic 

principle for deriving protocol entities, and we improve the way this principle is used in 

[KBD93] by minimizing the number of exchanged messages. Afterwards, we present the rules 

for deriving protocol without real-time requirements. In section 4, we describe how temporal 

requirements are specified in the service and the protocol. In section 5, we explain the 

approach used for calculating temporal requirements for protocol entities from temporal 

requirements on the service. In section 6, the resolution is done for three cases, one static and 

two dynamic. We show that the obtained temporal requirements are less strong than those in 

[KBD93]. In section 7, we present the different steps used for deriving protocol specifications 

for real-time applications. In section 8, few examples illustrate our method. In section 9, we 

consider that the medium is unreliable. We show that the protocol entities synthesized for a 

reliable medium can be used for an unreliable medium. In this case, a protocol entity 

communicates with the medium via a module which makes the unreliability of the medium 

invisible by the protocol entity.  And finally, we conclude.  

       
2. Service and protocol specifications for non real-time applications 
 

2.1.  Service specification  
 

 The desired service is described by a finite automaton, noted SS, which specifies the 

sequences of service primitives (SP) we would like to observe at the different service access 

points (SAP). To each SAP corresponds one protocol entity (PE) and we will not distinguish a 

PE and the corresponding SAP.  Transitions of SS are defined by three parameters (fig.1) 

which are : 

  - the service primitive E executed by the transition 

  - a number a identifying the entity or  the SAP  where  the  service  primitive  E  is  executed.  
     This   entity is noted PEa 

  - a number p identifying the transition, which is then noted Tp=(E,a)  
 

T  = (B, 4)       T   = (B, 1)       T   = (C, 4)4 5 6

T  = (A, 1)      T   = (B, 3)       T   = (C, 2)2 31
T1

T2

T4

T5

T63T

1

2

3 4  
Figure 1. Service specification  

 

 A transition is then designated by Tp=(E,a) and means that the primitive E is executed in 

PEa. As in [SP90, KBD93], for a state e of SS, out(e) et in(e) are respectively the sets of SAP 
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corresponding to the outgoing and ingoing  transitions. Example :  on  figure 1  in(2) = 
{SAP1,  

SAP2, SAP4},  and out(2)={SAP1,SAP3}.  

2.2. Protocol specification 
 

 A protocol entity PEa is described by a finite automaton, noted PSa (fig. 6), which has 

three types of transitions.  
 

First type      : execution of a service primitive  
Second type : the sending of a message is defined by si(p), and means "message  

                       parameterized by p is sent by PEa to entity PEi".   

Third type    : reception of a message is defined by ri(p), and means "message parameterized   

                       by p is received by PEa from PEi".  

 
3.  Deriving protocol entities for non real-time applications 
 

3.1. Principle of derivation 
 

 Deriving protocol consists on generating as many finite automata as the number of 
protocol entities. Each of these automata is noted PSi and  specifies the protocol entity PEi. 

For providing the desired service,  the  different PEi   will  exchange  synchronization 

messages  through a reliable medium. The basic principle used for deriving protocol is rather 

simple : when in the service two consecutive primitives A and B are executed by two different 
entities PEa and PEb, then : 

  - after execution of A by  PEa, this one sends a message m to entity  PEb 

  - after reception of message m by  PEb, this one executes B 
 

If after execution of the service primitive A by PEa, there is a choice between k service 

primitives Bi  executed by PEbi (i=1 to k) (fig.2), the basic principle is then used in [KBD93] as 

follows. When PEa executes transition Tp, it decides which transition among Tpi (i=1 to k) 

must be executed. It sends then the same message to all PEbi (PEa). The message contains 

the following two parameters: 
  - the identifier p of the executed transition Tp, 

  - the identifier pj of the chosen transition Tpj to be executed.  
 

T  =(A, a)

T   =(B1, b1)

T   =(Bk, bk) 

n
p

p1

pk

 
Figure 2. Choice between several actions. 
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All entities PEb1 to PEbk receive the message sent by PEa but only the chosen entity executes 

its transition. With this method, PEa may possibly send an important number of messages to 

inform one entity that  it can execute its transition, and all other entities that they must do 

nothing. For a state e of SS, the number of messages is equal to the cardinal of out(e), noted 
|out(e)|. Our improvement here is that PEa must send only one message, to the selected entity 

to inform it that it can execute one of its transitions.  
 
3.2. Rules for deriving protocol entities 
 

3.2.1. Transformation of the service specification 
 

 The first step for deriving protocol is to transform the service specification SS into an 

equivalent specification TSS (T for Transformed). The latter must respect the following 

condition.  
 

C1: From every state e of TSS, all executable outgoing transitions are executed by a same  
       protocol entity PEb (fig. 3),  i.e. cardinal of out(e) is equal to one (|out(e)|=1).   
 

T   =(B1, b)

T   =(Bk, b) 

n

p1

pk

 
Figure 3. Outgoing transitions in a state of the transformed specification TSS. 

 

The way for obtaining TSS from SS is the following. For every state e of SS, e is replaced by 
as many states ei as the cardinal of out(e) (fig. 4) . Outgoing transitions from states ei respect 

the condition C1  and the following condition. 
C2: Outgoing transitions of two different states ei and ej of TSS, generated from a same state  

       of SS, are executed by two different protocol entities.  

 

T  =(E, a)p
e

T   =(E1, b)p1

T   =(E3, b) p3








T   =(E2, c)p2

T  =(E, a)p e1

T   =(E1, b)p1

T   =(E3, b) p3








T   =(E2, c)p2
T  =(E, a)p e2  

                          4.a. State e in SS                                4.b. Transformation of e in TSS 

Figure 4. Example of transformation from SS to TSS 
 

Remarks : - if TSSSS, then TSS is non deterministic.  

                 - If for every state e of SS,  |ou(e)|=1, then TSS=SS.  

The transformation of the service specification of figure 1 gives the equivalent specification 

on figure 5.  
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Figure 5. Transformation of specification in figure 1 

3.2.2. Rules  

From the sevice specification SS, the derivation procedure consists of five steps.  
 

Step 1 : SS is transformed into TSS 
 

Step 2 : From TSS, we generate GPS (global protocol specification) with the following rules : 
 

   For a transition Tp=(E,a) :         n1 n2
T  =(E,a)p

 
 

    Case a : if out(n2)={SAPa},  the transition remains unchanged.                      
     
    Case b : if out(n2)={SAPb}≠{SAPa},  the transition  becomes:                         
 

                                                      n1 n2
T  =(E,a) t (p)ap b

 
   where tb

a(p) means "message parameterized by  p is sent by PEa and then received by PEb ". 
 

Step 3 : For each PEi, we generate GPSi  from GPS by the following rules : 
 

   For a transition Tp=(E,a) :                                  n1 n2
T  =(E,a)p

 
 

     Case a : if a=i,  the transition becomes :          n1 n2
E

 
 

     Case b : if a≠i the transition  becomes:            n1 n2


            
 

      where  represents a spontaneous transition. 
 

  For a  transition tb
a(p) :                                                    n1 n2

t (p)a
b

 
 

     Case a : if a=i (then b≠i), the transition becomes :     n1 n2
s  (p)b

 
 

     Case b  : if b=i (then a≠i), the transition  becomes:    n1 n2
r  (p)a

            
 

     Case c  : if  a≠i  and  b≠i,  the transition  becomes:    n1 n2


            
 

      where sb(p) means " message parameterized by  p is sent to PEb ", 

         and  ra(p) means " message parameterized by p and coming from PEa is received"   
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Step 4 : Transitions  of the different GPSi are considered spontaneous and are removed by  

projection for obtaining protocol specifications PSi . An algorithm for removing  is given in 

[BC79]. Intuitively, let  A be an automaton containing transitions  and specifying a system A, 

and let A be the automaton obtained by removal of   from A. If an external  observer can 

detect all transitions but , then  A is the specification of A as it is perceived by the observer.  
 

Step 5 : The obtained PSi are minimized, and are transformed into deterministic automata if 

they are non deterministic.  

For our example in figure 5, we obtain the specifications in figure 6: 

 

A

B

s (1)3

r (3)2 s (5)4

r (6)4

r (4)4

B

r (3)2

r (4)4

s (3)1

C

r (2)3

3s (3)

r (6)4r (1)1

r (3)2

s (2)2

B

s (2)4

r (6)4

r (5)1

B

C

s (6)1

r (5)1

r (2)3

s (4)1

3s (6)

r (5)1
r (2)3

 
            6.a. PS1                         6.b. PS2                6.c. PS3                        6.d. PS4 

                                            Figure 6. Obtained protocol specifications . 

We can prove that the unique obtained solution is semantically and syntactically  correct .  

The semantics is correct means that the derived entities provide the service specified by  SS. 

Their syntax is correct because they are deadlock-free and livelock-free, and no unspecified 

reception error is possible.   
 

4. Service  and protocol  specifications for real-time applications 
 

4.1. Service specification 
 

On a service specification with time requirements  (SST), each transition is defined by : 

- the three parameters presented in the previous section, 
- a  set  Cp of  time intervals, where p is the number identifying the transition .  

A transition is then defined by Tp=(E,a,p,Cp), and  the execution of Tp means execution by 

entity  PEa  of action E of the transition Tp. Let's consider for a state n of SST, its k ingoing 

transitions Tpi, and its m outgoing transitions Tqj (figure 7). The representation of figure 7 is 

used for defining the semantics of the sets Cqj of the outgoing transitions . Each Cqj contains 

as many time intervals as there are ingoing transitions on state n, i.e. it contains k intervals 
noted  Tpi,qj =[Tmipi,qj; Tmapi,qj]  (i= 1 to k). The semantics of a Tpi,qj is the following :  
 

When state n is reached by  an ingoing  transition Tpi, then : 

  Condition 1 : if the transition Tqj  is executed, it must be executed in the time interval Tpi,qj   

                             after state n has been  reached. 
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  Condition 2 : besides,  an outgoing   transition  among all the transitions  Tqj  (j = 1 to m)  

                         must  inevitably be executed after state n is reached.   
                         

(E1, a1, p1, C    )p1

(Ek, ak, pk, C   ) pk

n

q1(F1, b1, q1, C   ) 

qm(Fm, bm, qm, C    )

 
 

Figure 7. Ingoing and outgoing transitions on a state of SST  
 

Example: let n be a state with one ingoing transition and two outgoing transitions (fig.8).  

(E1, a1, p1, C   )p1
n

(F1, b1, q1, C   ) q1

(F2, b2, q2, C   )q2  
Figure 8. Example on the definition of the  semantics of time intervals 

 

Each of Cq1 and Cq2 contains  one interval , with Cq1={Tp1,q1} and Cq2={Tp1,q2}.  For 

example Tp1,q1=[1,3] and Tp1,q2=[2,5]. In this case, if Tq1 (resp. Tq2) is executed, it must be 

executed in the interval [1,3] (resp. [2,5]) after execution of Tp1 (condition 1). Besides, if 

neither Tq1 nor Tq2 are executed in a time equal to 3  after  execution  of  Tp1,  then  Tq2  must 

 inevitably be executed in the interval [3,5] after execution of Tp1 (condition 2). With this 

condition we have no deadlocks due to time constraints.   
 

From this semantics, we deduce that if state n is the initial state  then the different intervals of 
each  Cqj are equal. In other words, for each j=1 to m, we have Tp1,qj=Tp2,qj=...=Tpk,qj .  
 

Remark: Tp  is a transition identified by  p, while  Tp,q is the time interval containing the 

delay between transitions Tp et Tq.  
 

4.2. Protocol specification for real-time applications 
 

 There are three types of transitions in a protocol specification. 
 

First type      :  execution of a service primitive is defined by  (E, Dp) where :  

                        - E is the name of the service primitive, 
                        - Dp is a set of intervals whose semantics is given in section 6. 
 

Second type :  sending a message to another protocol entity is defined by si(p){Sp,b}, where  

                        Sp,b is an interval, contrary to Cp and Dp which are sets of intervals, (fig. 13).   
 

Third type    :  receiving a message is defined by ri(p). There is no time requirement in this  

                        type of  transition  (fig. 13).  Time  requirements  in  types  one  and  two  are 

                        sufficient for respecting time requirements in the service .    
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5. Approach of the  problem for calculating time requirements  (PCTR)  
 

5.1. Transforming SST into TSST 
 

 Before calculating temporal requirements for protocol entities, the transformation 

presented in section 3.2 must be applied to the timed service specification SST for obtaining 

the specification TSST. Therefore, outgoing transitions of a same state in TSST are executed 

by a same protocol entity.  

Example of figure 1 is reconsidered for a real-time application (fig. 9.a). After transformation, 

we obtain the non deterministic specification of figure 9.b.  
 
 

T1

T2

T4

T5

T63T

1

2

3 4

1T  = (A, 1, 1, C  )  1

2T   = (B, 3, 2, C  ) 2

3
T   = (C, 2, 3, C  )3

4
T  = (B, 4, 4, C  ) 4

5T   = (B, 1, 5, C  ) 5

6T   = (C, 4, 6, C  )6

T1

T2

T4

T5

T63T

1

2

T1

2

3

3

4

T2
3T T6

1

2

1 2

 
                              9.a. Specification SST                            9.b. Specification TSST 

Figure 9. Example of transformed real-time specification 

 

5.2. Approach of the problem  

 For calculating time constraints on protocol entities, we must consider, at once on a state 

n of TSST, one of its ingoing transitions and all its outgoing transitions (fig.10). In a first 
time, we consider the case where out(n)≠{SAPa}. In other words, the protocol entity PEa 

(executing the ingoing transition) is different than PEb which executes the outgoing 

transitions.   
 

T   =(E1, b, p1, C    )p1

T   =(Ek, b, pk, C   ) pk

n
T  =(E, a, p, C  )pp

p1

pk

 
Figure 10. Outgoing transitions on a state of TSST 

 

Let then  Tp be a transition in an entity PEa followed by several transitions Tpj, j=1 to k, in 

PEb. After Tp,  PEa must send a message to PEb (by sb(p) ), and when PEb receives the 

message (by ra(p) ), it executes one of the k transitions Tpj ( j=1 to k).  The sequencing of 

events between Tp and Tpj is represented in function of the time on figure 11.a.  
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axe du tempst j

t s t m tj r

s  (p)bTp r  (p)a Tpj

s  (p)b r  (p)a

PE PEa b

TpjTp

 
        11.a. Representation in function of the time                         11.b. Representation by entity 

Figure 11. Representation of events between Tp and Tpj  
 

The temporal requirements in the service impose that the time tj between  executions of Tp 

and Tpj belongs to Tp,pj=[Tmip,pj; Tmap,pj]. We suppose that we have a model of the reliable 

medium, i.e. the transit delay tm , in the medium, of a message sent by PEa and received by 

PEb, belongs to an interval Ma,b=[Mmia,b, Mmaa,b] which depends on PEa and PEb.  

The aim of temporal requirements derivation on protocol entities is the the following one.  
 

From requirements  tm Ma,b  and t j Tp,pj  ( for j= 1 à k),  we must derive constraints on ts   

and t jr  ( j=1 to k) which ensure that temporal requirements  t j  Tp,pj   on the service  will be 

respected . These  derived constraints  are written in the form ts  Sp,b=[Smip,b ,Smap,b],  and 

tjr  R p,pj =[Rmip,pj , Rmap,pj ] for j=1 à k .  
 

Requirements on ts and tjr are temporal requirements on the protocol. In fact, ts is the delay 

between Tp and sb(p) which are executed in PEa, and tjr is the delay between ra(p) and Tpj 

which are executed in PEb (fig. 11.b).  
 

Remark : If  PEa=PEb, no message is sent. In this case we take ts=tm=0. So the derivation is 
trivial.: tj=tjr, then Sp,b=[0;0], Ma.b=[0;0] and Rp,pj=Tp,pj . 

The following notations also will be used :  
 - Vmip,b et Vmap,b are parameters belonging to [0,1]. They are defined for a transition Tp  

   (executed by an entity PEa) and a protocol entity PEb (≠PEa) which executes transitions   

   consecutive to Tp. They are used to choose one solution among an infinite number of  

   solutions. If we obtain, as we will see formerly, for Sp,b=[Smip,b, Smap,b] the constraint   

   Smap,b[], we choose  Smap,b = +Vmap,b*(-). In the same manner, if we obtain  

   Smip,b [], we choose Smip,b =  + Vmip,b*(). 
 

 - Addition and subtraction of two intervals [a, b] and [c, d] are defined by  

   [a, b] + [c, d] = [a + c, b + d] ,   and  [a, b] - [c, d] = [a - c, b - d]. 
 

If we summarize, the entries of  PCTR  for protocol entities are :   
 - Tp,q and Ma,b for every pair of consecutive transitions Tp et Tq , respectively executed in  

    PEa and PEb,   

 - Vmip,b and Vmap,b for every pair (Tp, PEb) of transition Tp and entity PEb executing  
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    transitions consecutively to Tp. They are used to choose a particular solution among an  

    infinite number of solutions. 
 

Solutions of PCTR  are : 
 - Sp,b for every transition Tp executed by an entity PEa and followed by transitions executed   

   in PEb≠PEa. If PEb=PEa, we can take Sp,b=[0;0].  

 - Rp,q for every pair of consecutive transitions Tp and Tq .   
 

We show in the next section 5.3 that there exist conditions on entries Tp,q and Ma,b of PCTR 

for the existence of solutions.   
 

5.3. Condition for existence of solutions 
 

 We consider then, for a state n of TSST, one of its ingoing transition Tp (executed in 

PEa), and all its outgoing transitions Tpj , j=1 to k, (executed in PEb) (fig. 10).  From figure 

11.a,  we can write :  
for j=1 to k :            tj  Tp,pj  implies   ts + tm + tjr   Tp,pj                            (1) 

  
As  tm  Ma,b=[Mmia,b, Mmaa,b], then  condition (1) implies :  
 

for  j= 1 to k :            ts + Mmia,b  + tjr  ≥ Tmip,pj                                              (2) 
 

      ts + Mmaa,b + tjr  ≤ Tmap,pj                                              (3) 
 

Formulae (2) et (3) imply 
 

     for j= 1 to k :             Tmap,pj - Mmaa,b ≥ sup(Tmip,pj - Mmia,b; 0)                   (4) 

Condition (4) is for a state of TSST and one of its ingoing transitions. Therefore, for every 
state and one of its ingoing transitions  Tp, resolution of PCTR consists in :   

       - checking if condition (4) is respected  

       - if the checking is positive then : 
          * interval Sp,b is calculated (constraint on ts ),    

          * intervals Rp,pj , j=1 to k, are calculated (constraints on tjr ,  j=1 to k).   
 

5.4. Comparison with [KBD93] approach   (old approach)   
 

 In [KBD93], the resolution of PCTR is done from the specification SST. In our improved 

approach, the resolution is done from the transformed specification TSST. Therefore, 

condition (4) with the old approach is more restricting than here. In fact, a condition of 

existence from SST can be constituted by several conditions of existence from TSST, and it is 

respected if all those conditions are respected. An example is given on figure 12.  
 



 11

T =(A,1,1,{T   ;T   })1 2,1 3,1

T =(B,1,2,{T   })2 1,2

T =(C,2,3,{T   })3 1,3

T 1

T 2

T 3

T 1

1
1

2

22

21

 
                                              12.a. SST                                 12.b. TSST 

Figure 12. Example for comparing conditions for existence of solutions 
 

From SST, we have three conditions of existence (i, j, and k), which are the following.  
 

  - for state 1 and ingoing transition T2 :  Tma2,1  ≥ Tmi2,1                                                      (i) 

  - for state 1 and ingoing transition T3 :  Tma3,1 - Mma2,1 ≥ sup(Tmi3,1- Mmi2,1 ; 0)            (j) 

  - for state 2 and ingoing transition T1 :  Tma1,2  ≥ Tmi1,2                                                    (k1)  

                                                               :  Tma1,3 - Mma1,2  ≥ sup(Tmi1,3- Mmi1,2 ; 0)         (k2) 
 

The third condition (k) is constituted by (k1) and (k2). If for instance only (k1) is respected, 

then the condition (k) is not respected, and we consider that the temporal requirements cannot 
be respected after execution of transition T1. The last assumption is too restricting, because in 

reality only temporal requirements between executions of T1 and T3 cannot be respected 

(because k2 is not respected).   
 

With the improved approach,the restriction does not exist: from TSST we have four 

conditions for existence of solutions, because (k1) and (k2) are considered to be two 
independent conditions. In fact (fig.12.b)  (k1) is for temporal requirements between T1 and 

T2, 

                                               (k2) is for temporal requirements between T1 and T3.  
 

The transformation which modifies the timed service specification SST into TSST has then a 

second advantage. Besides minimizing the number of messages, sometimes we can have 

solutions for PCTR from TSST when there are not from SST.  

6. Resolution of PCTR 
 

 For resolving PCTR, we consider the three following cases :  
 

Static case :                   messages transmitted by  entities contain no temporal information , 

First dynamic case :      the PE put a temporal information in messages they send,  

Second dynamic case :  besides the temporal information put by the PE,  the medium  adds a 

second temporal information in the message. This information is an estimation of the transit 

delay of the message in the medium. In this third case, treated in detail in section 6.3, the 

receiving entity can have a good temporal information without using a global clock. 
 

6.1. Static case 
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 This case is static because the intervals Sp,b and Rp,pj are constant. When an entity PEa 

executes a transition Tp and decides to send a message to entity PEb, the time ts, between 

execution of Tp and transmission of the message, belongs to a constant interval Sp,b.  When 

PEb receives the message from PEa, it can execute a transition Tpj, among the k possible 

transitions (j=1 to k), in a time tjr belonging to a constant interval Rp,pj .  

 If  Sp,b  and  Rp,pj  are such that condition (1) is respected for every ts  Sp,b  and tjr  Rp,pj 

and tm  Ma,b, then it is equivalent to have :  

     for  j=1 to k :     Sp,b + Ma,b + Rp,pj   Tp,pj                                        (5)  
 

that is to say :     for j= 1 to k :     Smip,b  + Mmia,b  + Rmip,pj  ≥ Tmip,pj                        (6) 
 

            Smap,b + Mmaa,b+ Rmap,pj  ≤ Tmap,pj                         (7) 

Resolution : 
  Condition  (7) implies :       Smap,b   [0;  minj=1 à k (Tmap,pj - Mmaa,b)]             (8) 

   
  then (6) and (7) imply  :       Smip,b   [sup(U, 0); Smap,b ]                                      (9) 

 

  with  U =  maxj=1 à k (Smap,b  + (Mmaa,b - Mmia,b) - (Tmap,pj - Tmip,pj))              (10) 
 

By using parameters Vmap,b   and Vmip,b , we choose a particular solution for Smap,b and 

Smip,b which respects (8) and (9).  We have then :  
 

                                      Smap,b = Vmap*minj=1 à k (Tmap,pj - Mmaa,b )                           (11) 
 

                                       Smip,b =  sup(U, 0) + (Smap,b - sup(U, 0))*Vmip,b                    (12) 
 

We choose afterwards the less restrictive solutions on  Rp,pj=[Rmip,pj; Rmap,pj]  respecting   

(6) and (7). We have then : 
 

         for j=1 to k :      Rmap,pj  = Tmap,pj - Mmaa,b - Smap,b                         (13)  
 

                                                    Rmip,pj  = sup(Tmip,pj - Mmia,b- Smip,b; 0)                (14) 

 We can easily check that the obtained service is  included in  the desired  service  (safety).  
It is better to choose Vmap,b as small as possible and Vmip,b as big as possible. This implies to 

have Smap,b and Smip,b as small and close as possible. Rmap,pj and Rmip,pj will be then the less 

constrained as possible, and the receiving entities will have as much time as possible to 

provide the service. 
 

6.2. First dynamic case 
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 This case is dynamic because the receiving PEb calculates dynamically the interval Rp,pj, 

when it receives the message from PEa. In fact, after execution of Tp,  PEa sends to PEb a 

message with information ts.  And PEb calculates Rp,pj  in function of ts.   
 

Resolution:  
 

  formula (3) implies   ts + Mmaa,b ≤ Tmap,pj . If Sp,b=[Smip,b;Smap,b] is an interval always 

containing  ts then we have the condition (8) as in the static case: 
 

Smap,b   [0;  minj=1 à k (Tmap,pj - Mmaa,b )]                     (8) 
      
And  Smip,b is less constrained than in the static case :  
 

                                         Smip,b   [0 ; Smap,b ]                                                       (15) 
 

As in the static case , a particular solution is chosen by using parameters Vmap,b  and Vmip,b  : 
  

                                          Smap,b = Vmap,b*minj=1 à k (Tmap,pj - Mmaa,b )                     (11) 
 

                                          Smip,b =   Smap,b*Vmip,b                                                         (16) 
  
 If  ts , which belongs to [ Smip,b; Smap,b ] ,  is the delay when the message is sent after 

execution of Tp, the receiving entity knows it and can choose :  
 

                for j=1 to k :    Rmap,pj  (ts) = Tmap,pj - Mmaa,b - ts                              (17)  

                                          Rmip,pj  (ts) = sup( Tmip,pj - Mmia,b - ts;  0)                 (18) 
 

 We can easily check that the provided service is included in the desired service. With the 
information ts, the receiving entity  PEb will use the time allocated to it to provide the service 

more efficiently then in the static case.  In fact, time interval Rp,pj(ts) ( (17) and (18) ) is less 

restricting than interval Rp,pj  ( (13) and (14) ), because Rp,pj is strictly included in Rp,pj(ts). 

Intuitively, in dynamic case the receiving entity PEb has a more accurate information about 

when Tp has been executed by PEa. In the static case, it has to suppose the worst cases for the 

time ts . Therefore, sometimes in static case it has to "hurry up", when in dynamic case it has 

not to.  

6.3. Second dynamic case 
 

 In this case, PEb receives the message with informations ts and tm, and it calculates 

dynamically the interval Rp,pj in function of these two informations.  
 

Resolution : 
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Sp,b = [Smip,b ; Smap,b]  is resolved as in section 6.2 ( (11) and (16) ).  Rmap,pj  and Rmip,pj  are 

calculted dynamically by PEb with the following formulae : 
 

                           for j=1 to k : Rmap,pj (ts, tm) = Tmap,pj - ts - tm                        (19)  
 

                                                  Rmip,pj (ts, tm) = sup( Tmip,pj - ts - tm;  0)           (20) 
 

We can check that the desired service is respected (safety) by the protocol. With information 
tm, the receiving entity PEb uses more efficiently the time allocated to it to provide the 

service. In fact, Rp,pj(ts)   ( (17)  and (18) )  is strictly included in  Rp,pj(ts, tm)  ( (19) and (20) 

).   
 

6.4. Comparison with [KBD93] approach 
 

 Temporal requirements on protocol obtained with [KBD93] approach are more 
restricting than those derived with our improved approach. In fact, intervals containing Smap,b 

and Smip,b ((8), (9) and (15) ) are bigger than or equal to those obtained in [KBD93]. With our 

approach, Sp,c and Rp,pj  are independent when Tpj is  executed by PEb≠PEc.  
 

If we recapitulate, advantages of the approach here are :  

  - the number of exchanged messages is minimized, 

  - conditions for existence of solutions are less strong, 

  - derived temporal requirements are less restricting. 
 

6.5. Transit delay in the medium  
 

 In the second dynamic case, time tm  is not an accurate value. It is an estimation of the 

transit delay in the medium. In fact,  if the  message  goes  through  many  nodes  before 
reaching  its  destination, tm comprises estimations of  : 

  *  transmission and propagation delays between the different adjacent nodes,  

  *  the time passed in the nodes (processing and especially waiting in queues) . 
 

For these reasons, positive parameters   and  can be added in formulae (19) and (20) which 

become :  

                           for j=1 to k : Rmap,pj (ts, tm) = Tmap,pj - tm - ts -                            (21)  

                                                 Rmip,pj (ts, tm) = sup( Tmip,pj - tm - ts + ;  0)            (22) 
 

This is equivalent to estimate the transit delay in the interval  [ tm -  ; tm + ] . 
 
7. Deriving protocol  for real-time applications  
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 The derivation procedure consists of six steps. 
 

Step 1 : The service specification SST is transformed into the equivalent TSST 
 

Step 2 : From the specification TSST,  we generate SSTT defined  below. 
 

- In the static case, a receiving entity PEb must know the constant interval Rp,pj  ((13) and  

(14)) , which is the time interval allocated to it, since reception of the message, for executing  
Tpj.  
  

- In the first dynamic case, a receiving entity PEb must know the constant  interval  Xp,pj = 

  Tp,pj - Ma,b and the parameter ts  contained in the message. PEb  can therefore calculate  

  dynamically Rp,pj (by formulae (17) and (18)). 
 

- in the second dynamic case, PEb must know the constant interval Tp,pj  , and parameters ts   

  and  tm  received in the message. It can therefore calculate dynamically Rp,pj  (by formulae  

  (19) and (20)). 
 

We deduce from this that  SSTT is obtained from TSST by : 
     * associating time intervals Sp,b to transitions  Tp followed by  transitions executed in   

        PEb≠PEa. Here PEa is the entity which executes Tp.  

     * replacing time intervals  Tp,pj  by intervals: 

          - Rp,pj in the static case   

          - Xp,pj in the first dynamic case  

  The substitution is not done in the second dynamic case. 
 

For obtaining SSTT, every transition Tp of  TSST   :       
(E, a, p, C  )  p

n1 n2  
 

is then replaced by the         transition :                            
(E, a, p, D  , S    )  p,bp

n1 n2  
 
Where out(n2) ={SAPb} and Dp is the set of intervals :  

        * Rpi,p  in the static case  

        * Xpi,p  in the first dynamic case  

        * Tpi,p  in the second dynamic case 

where pi are identifiers of ingoing transitions of state n1.  
 

Remark : Intervals in Dp have not the same semantics in the three cases. In the static case, 

Rpi,p are constant temporal requirements, while in the two other cases, Xpi,p and Tpi,p are 

constant intervals used for dynamic calculation of the time requirements on Tp when it 

succeeds to transition Tpi. 
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The complexity of the algorithm for generating SSTT  is in   O(n*e*s)  with : 

  - n : number of states of TSST, 

  - e : maximum number of ingoing transitions by state in TSST,   

  - s : maximum number of outgoing transitions by state in TSST. 
 
Step 3 :  For each PEi we generate SSTi from SSTT. The finite automaton SSTi is obtained by 

replacing every transition  (E,a,p,Dp,Sp,b)  by :   - (,a,p)               if   a ≠ i ,     

                                                                              - (E,p,Dp,Sp,b)    if   a=i  
 

Step 4 :  A finite automaton SPSTi,  is derived from each SSTi  by using the following rules  : 

   - For a transition (E,p,Dp,Sp,b) of SSTi                   :            
(E, p, D  , S    )  p,bp

n1 n2  
 

     Case  a :  if out(n2) = {SAPi} the transition becomes  :    
(E, D  )   pn1 n2  

           In this case,  interval Sp,b is not defined because b=i. 
 
     Case b :  if out(n2) ≠ {SAPi} we obtain : 

               * in the static case :                         n1 n2
(E, D  )p p,bs  (p){S    }b

 
 

              * in the two dynamic cases  :           
s  (p,t  ){S    }

n1 n2
(E, D  )p p,bb s

 
 
    sb(K) means "transmission to entity PEb of message parameterized by K" . {Sp,b} specifies      

    that sb(K) must be executed in a time belonging to  interval Sp,b  after the  preceding action.   
     

 -For a transition (,a,p):                       n1 n2
( ,a,p)

 
 

     Case c :  if out(n2) ={SAPi}, the transition becomes :                 

     * static case      :                     n1 n2
r  (p)a

 
 

               * first dynamic case    :          n1 n2
r  (p, t  )a s

 
 

               * second dynamic case   :      n1 n2
r  (p, t  , t   )a s m

 
 

     Case d :  if out(n2)={SAPj}≠{SAPi}, the transition becomes :       n1 n2
 

 

  ra(K) means "reception from PEa  of a message parameterized by K" .  
 

 

Step 5: The transitions  are considered spontaneous and are removed by projection (see also  
               section 3.1.2). We obtain then timed protocol specifications  for each PEi. 
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Step 6 : The obtained specifications are minimized, and transformed into deterministic 
automata PSTi if they are non deterministic.  
 

8. Examples  
 

8.1. Example 1  
 

 We consider example of figure 9. This example is also  in [KBD93] with the old 
approach. We have  C1 = {T4,1},   C2 = {T1,2 ; T3,2 ; T6,2} ,   C3 = {T2,3},  C4 = {T2,4},   C5 

= {T1,5 ; T3,5 ; T6,5} ,   C6 ={T5,6}.   

For instance T4,1=[3, 6],  T1,2 =[5,10],  T3,2=[4,8],  T6,2=[4,10] , T2,3=[3,8] ,  T2,4=[4,9] ,  

T1,5=[1,3] ,  T3,5=[4,8] ,  T6,5=[3,8] ,  T5,6=[4,10].  

We choose the medium Mu,v=[2,4] for every  (u,v), and at last  Vmap,a=Vmip,a=0.5  for 

(p,a){(1,3);(2,2);(2,4);(3,1);(3,3);(4,1);(5,4);(6,1);(6,3)}. 
 

The derived protocol specifications  are represented below (figure 13).  
 

r (2)3s (3){S   }1 3,1

(C,D )3

s (3){S   }3 3,3

r (6)4r (1)1

r (3)2

r (6)4

(B,D )2

s (2){S   }2 2,2

s (2){S   }4 2,4

r (5)1

r (5)1

r (2)3

r (5)1

r (2)3 (C,D )6

(B,D )4

3s (6){S   }6,3 s (6){S   }1 6,1

s (4){S   }1 4,1

r (3)2

r (6)4

r (4)4

r (3)2

r (4)4(A,D )

(B,D )

1

5

(B,D )5

s (1){S   }3 1,3

s (5){S   }4 5,4

1

2

3 4 5 6

 
            13.a. PST1                     13.b. PST2      13.c. PST3                         13.d. PST4 
 

Figure 13. First example of protocol specifications with time requirements 
 

 With D1={R4,1}, D2={R1,2; R3,2; R6,2}, D3={R2,3}, D4={R2,4}, D5={R1,5; R3,5; R6,5}, 

D6={R5,6} .  
 

Remark: Step 5, which consists on removing non determinism, generates redundant temporal 
requirements. For example on figure 13.a, D5={R1,5; R3,5; R6,5}. But for transition  (B,D5) 

from state 2, only R1,5 is necessary. And for transition (B,D5) from state 4, only  R3,5 and R6,5 

are necessary.  
R1,5 contains the delay between executions of (A,D1) and  (B,D5),  

R3,5 contains the delay between executions of  r2(3)    and  (B,D5),  

R6,5 contains the delay between executions of  r4(6)    and  (B,D5),  

From formulae  (11), (12), (13) and  (14), we calculate : 
    S1,3 = [1.5; 3]         R1,2  = [1.5; 3]                               S4,1 = [0.5; 1]         R4,1  = [0.5; 1]         

                                    R1,5  = [1; 3]                                  S5,4 = [1.5; 3]         R5,6  = [0.5; 3]  
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    S2,2 = [1; 2]            R2,3  = [0; 2]                                   S6,1 = [1; 2]            R6,5  = [0 ; 2]  

    S2,4 = [1.25; 2.5]    R2,4  = [0.75; 2.5]                            S6,3 = [1.5; 2]         R6,2= [0.5; 3]  

    S3,1 = [1; 2]            R3,5  = [1; 2]  

    S3,3 = [1; 2]            R3,2  = [1; 2]  
 
 

8.2. Example 2 
 

 This example also is in [KBD93] with the old approach. Two protocol entities PE1 and 

PE2 must communicate in a connected mode. To reduce calculations, we do the following 

hypotheses :  
  - connection and disconnection are done by PE1 , 

  - the provider of service in PE2 cannot refuse a connection , 

  - data transfer is done from PE1 to PE2 ,  

  - PE1 sends a new data only if the preceeding has been received by PE2 . 
 

The executed events are noted TC.rqt, TC.ind, TC.rsp, TC.cnf, TD.rqt, TD.ind, TDt.rqt and 

TDt.ind . TC, TD and TDt are respectively abbreviations of T-connect, T-disconnect and T-

data. And rqt, ind, rsp and cnf are respectively abbreviations of request, indication, response 

and confirm. A formal representation of service with time requirements is represented on 

figure 14, it is inspired by the protocol of the transport layer classe 0 ( [Ta90], that is why  

primitives have names beginning by letter T). We have T1=(TC.rqt,1,1,C1), 

T2=(TC.ind,1,2,C2), T3=(TC.ind,2,3,C3), T4=(TD.rqt,2,4,C4), T5=(TD.ind,1,5,C5), 

T6=(TC.rsp,2,6,C6), T7=(TC.cnf,1,7,C7), T8=(TDt.rqt,1,8,C8), T9=(TDt.ind,2,9,C9), 

T10=(TD.rqt,1,10,C10), T11=(TD.rqt,1,11,C11), T12=(TD.ind,2,12,C12). Où C1={T2,1, T5,1, 

T12,1}, C2={T1,2}, C3={T1,3}, C4={T3,4}, C5={T4,5}, C6={T3,6}, C7={T6,7}, C8={T7,8, T9,8}, 

C9={T8,9}, C10={T7,10, T9,10}, C11={T8,11}, C12={T10,12, T11,12}. 
 

T1
T2

T4

T5

T6 T7

3T

1

2

34 5 6
T8

7
T9

T10
T11

T12

 
 

Figure 14. Formal specification of the desired service with two communicating entities  

On figure 14: 
   - T1 to T7  correspond to connection set-up phase. If the connection is accepted, state 6 is   

      reached.  
   - T8 to T9 represent data transfer phase,  

   - T10 to T12 specify the disconnection phase.   
 



 19

  Let's take for instance T2,1=T5,1=T12,1=[3,6], T1,2=[1,2], T1,3=[3,7], T3,4=[1,2], T4,5=[2,5], 

T3,6=[2,3], T6,7=[4,7],  T7,8=[1,3], T9,8=[2,6], T8,9=[3,6], T9,10=[2,5], T8,11=[0,2], 

T10,12=T11,12=[3,6]. Let's also take the medium Mu,v=[2,4] for every (u,v), and finally  

parameters Vma
p,b

=Vmi
p,b= 0.5 for every p=1, 4, 6, and 8 to 12.  

 

The derived protocol specifications with time requirements are represented on figures 15 and  

16, with D1={R2,1, R5,1, R12,1}, D2={R1,2}, D3={R1,3}, D4={R3,4}, D5={R4,5}, D6={R3,6}, 

D7={R6,7}, D8={R7,8, R9,8}, D9={R8,9}, D10={R7,10, R9,10}, D11={R8,11}, D12={R10,12, R11,12}. 
 

                           

1

(TC.rqt,D )1

(TC.cnf,D )7

(TC.ind,D )2

r  (12)2

(TDt.rqt,D )8

(TD.ind,D )5

s (1){S   }2 1,2

(TD.rqt,D  )10

(TD.rqt,D  )11

r  (9)2

r  (4)2

s (8){S   }2 8,2

s (10){S    }2 10,2

s (11){S    }2 11,2

r  (6)2  
 

  Figure 15. Protocol specification for the communicating entity  PE1 
 

1

s (4){S   }1 4,1

r  (1)1

r  (10)1
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r  (11)1

s (6){S   }1 6,1

s (9){S   }1 9,1

s (12){S    }1 12,1

(TD.ind,D  )12

(TC.ind,D )3

(TD.rqt,D  )4
(TC.rsp,D )6

(TDt.ind,D )9

 
 

Figure 16. Protocol specification for the communicating entity  PE2 
 
 

From formulae (11), (12), (13) and (14) we calculate:    
                                       R1,2  = [1; 2]  

    S1,2 = [0.75; 1.5]       R1,3  = [0.25; 1.5]  

                                       R2,1  = [3; 6]             R3,4 = [1; 2]           R3,6 = [2; 3]  

     S4,1 = [0.25; 0.5]      R4,5  = [0; 0.5]   

                                        R5,1  = [3; 6]     

    S6,1= [1; 1.5]              R6,7  = [1; 1.5]  

                                        R7,8  = [1; 3]            R7,10 = [1; 3]  

    S8,2 = [0.5; 1]             R8,9  = [0.5; 1]  

                                        R8,11  = [0; 2]  

    S9,1= [0.25; 0.5]         R9,8 = [0; 1.5]           R9,10 = [0; 0.5]  

    S10,2 = [0.5; 1]           R10,12 = [0.5; 1]         
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    S11,2= [0.5; 1]            R11,12 = [0.5; 1]       

    S12,1 = [0.5; 1]           R12,1= [0.5; 1]          

 

9. Deriving protocol with unreliable medium 
 

9.1 Approach 

 When the medium is  not   reliable,   two  general   approaches   are  thinkable.   The  first  
one consists of modifying the protocol entities PEi obtained for reliable medium ([CL88]). 

The second, which is the one we have adopted, consists of inserting a new module Mi between 

each PEi and the medium (fig.17.).  
 

Reliable Medium

...

PE1

SAP1

PE 2

SAP2

PE n

SAPn...

...

Unreliable Medium

...

...

...
PE1

SAP1

PE 2

SAP 2

PE n

SAPn

M1 M M2 n

 
                       17.a. Realiable medium                   17.b. Unreliable medium with modules 

Figure 17. Addition of modules for an unreliable medium 
 

The aim of each module Mi is to hide as much as possible the unreliability of the medium. 

The ideal would be that the unreliable medium combined with modules Mi is equivalent to a 

reliable medium. But in reality, it is not always possible 
 

9.2. Classical  examples  
 

9.2.1. Transport Layer  ([Ta90]) 
 

 If the medium is made up of the three basic layers (physical, data linker and network), 
the added modules Mi can be the transport layer. If for instance the network is unreliable and 

generate N-Reset, then the transport protocol is of class 4.  
 

9.2.2. "Alternating bit" protocol  ([MB83]) 
 

 If the medium can loose or garble messages, the modules Mi can for instance be the 

"alternating bit" protocol. On figure 18, there is an example of two communicating entities 
PE1 and PE2. Here, for simplicity, PE1 is a sender and PE2 is a receiver.  
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Figure 18. Alternating bit for an unreliable medium 

si and ri (i=0, 1) represent respectively the sending and receiving of an information frame 

which contains the last data block submitted by the user  and the "alternating bit". Similarly, 

the operations sacki and racki  are the sending and receiving of an acknowledge frame which 

contains only a single bit. The operations re and and racke are a reception of a frame in error.  
Specifications of the medium,  of the sender (M1) and of the receiver (M2) are given in 

[MB83], respectively on figures 10.a, 10.b and 10.f.  
 

10.  Conclusion 
 

  A method for deriving protocol for real-time applications is proposed in [KBD93]. In this 

paper, we improve and extend this method. We improve it by minimizing the number of 

exchanged messages. Consequences of this improvement are : 
 

  - conditions for existence of solutions are less strong. In some cases,  approach in [KBD93] 

does not derive a protocol which respects a desired service, when the improved  approach 

gives a solution.   

  - temporal requirements on derived protocols are less strong.  
 

Extension of [KBD93] is done by considering an unreliable medium. 
 

As in [KBD93], the time requirements can be calculated statically or dynamically. In the 

dynamic case, a method for exchanging complete temporal informations between entities is 

proposed. In this case, synchronization of local clocks is not necessary, so a global clock is not 

necessary. The dynamic case is interesting because the receiving protocol entities use more 

efficiently the time  allocated to them to provide the service. In this paper, we give the same 

examples (sections 8) than those in [KBD93], but the derived protocols are not the same. Let's 

notice that the proposed algorithm can be useful in other areas than telecommunications 

(robotics ...) where several systems interact with each other to perform tasks in bounded 

delays.  But there is a restriction : tasks are not concurrent.  
 

At the present time, we are working for the two following improvements :   

 - considering concurrent tasks , 
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 - considering time requirements between events which are not consecutive.  
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